Wednesday 8 November 2017

Autocorrelação Função Movimento Processo Médio


Objetivo: Verificar os lotes de Autocorrelação de aleatoriedade (Box e Jenkins, pp. 28-32) são uma ferramenta comumente usada para verificar a aleatoriedade em um conjunto de dados. Essa aleatoriedade é verificada pela computação de autocorrelações para valores de dados em diferentes intervalos de tempo. Se aleatório, tais autocorrelações devem estar próximas de zero para separações de tempo e intervalo. Se não aleatório, uma ou mais das autocorrelações serão significativamente diferentes de zero. Além disso, os gráficos de autocorrelação são usados ​​na fase de identificação do modelo para os modelos de séries temporais médias autorregressivas Box-Jenkins. Autocorrelação é apenas uma medida da aleatoriedade Observe que não corretamente não significa aleatoriamente. Os dados que possuem autocorrelação significativa não são aleatórios. No entanto, dados que não mostram autocorrelação significativa ainda podem exibir aleatoriedade de outras maneiras. A autocorrelação é apenas uma medida de aleatoriedade. No contexto da validação do modelo (que é o principal tipo de aleatoriedade que discutimos no Manual), a verificação da autocorrelação é geralmente um teste suficiente de aleatoriedade, uma vez que os resíduos de modelos de montagem pobres tendem a exibir aleatoriedade não sutil. No entanto, algumas aplicações exigem uma determinação mais rigorosa da aleatoriedade. Nestes casos, uma série de testes, que podem incluir verificação de autocorrelação, são aplicados, pois os dados podem ser não-aleatórios de muitas formas diferentes e muitas vezes sutis. Um exemplo de onde uma verificação mais rigorosa da aleatoriedade é necessária seria testar geradores de números aleatórios. Lote de amostra: as correções automáticas devem ser próximas de zero para a aleatoriedade. Tal não é o caso neste exemplo e, portanto, a suposição de aleatoriedade falha. Esse gráfico de autocorrelação de amostra mostra que a série de tempo não é aleatória, mas sim um alto grau de autocorrelação entre observações adjacentes e adjacentes. Definição: r (h) versus h As tramas de autocorrelação são formadas por eixo vertical: coeficiente de autocorrelação onde C h é a função de autocovariância e C 0 é a função de variância Observe que R h está entre -1 e 1. Observe que algumas fontes podem usar o Seguinte fórmula para a função de autocovariância Embora esta definição tenha menor preconceito, a formulação (1 N) possui algumas propriedades estatísticas desejáveis ​​e é a forma mais utilizada na literatura estatística. Veja as páginas 20 e 49-50 em Chatfield para obter detalhes. Eixo horizontal: intervalo de tempo h (h 1, 2, 3.) A linha acima também contém várias linhas de referência horizontais. A linha do meio está em zero. As outras quatro linhas são 95 e 99 bandas de confiança. Observe que existem duas fórmulas distintas para gerar as faixas de confiança. Se o gráfico de autocorrelação estiver sendo usado para testar aleatoriedade (ou seja, não há dependência de tempo nos dados), recomenda-se a seguinte fórmula: onde N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa ) É o nível de significância. Nesse caso, as bandas de confiança possuem uma largura fixa que depende do tamanho da amostra. Esta é a fórmula que foi usada para gerar as faixas de confiança na trama acima. Os gráficos de autocorrelação também são usados ​​no estágio de identificação do modelo para montagem de modelos ARIMA. Neste caso, um modelo de média móvel é assumido para os dados e as seguintes faixas de confiança devem ser geradas: onde k é o atraso, N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa) é O nível de significância. Nesse caso, as bandas de confiança aumentam à medida que o atraso aumenta. O gráfico de autocorrelação pode fornecer respostas para as seguintes questões: Os dados são aleatórios É uma observação relacionada a uma observação adjacente É uma observação relacionada a uma observação duas vezes removida (etc.) É a série de tempo observada ruído branco É a série temporal observada sinusoidal A série temporal observada é autorregressiva. O que é um modelo adequado para as séries temporais observadas. O modelo é válido e suficiente. A ssqrt da fórmula é válida. Importância: Garantir a validade das conclusões da engenharia. A aleatoriedade (juntamente com o modelo fixo, a variação fixa e a distribuição fixa) é Um dos quatro pressupostos que geralmente dependem de todos os processos de medição. A suposição de aleatoriedade é extremamente importante para os seguintes três motivos: a maioria dos testes estatísticos padrão depende da aleatoriedade. A validade das conclusões do teste está diretamente relacionada à validade do pressuposto de aleatoriedade. Muitas fórmulas estatísticas comumente usadas dependem da suposição de aleatoriedade, sendo a fórmula mais comum a fórmula para determinar o desvio padrão da amostra: onde s é o desvio padrão dos dados. Embora fortemente utilizados, os resultados da utilização desta fórmula não têm valor a menos que a suposição de aleatoriedade seja válida. Para dados univariados, o modelo padrão é Se os dados não são aleatórios, este modelo é incorreto e inválido, e as estimativas para os parâmetros (como a constante) tornam-se absurdas e não válidas. Em suma, se o analista não verificar aleatoriedade, a validade de muitas das conclusões estatísticas torna-se suspeita. O plano de autocorrelação é uma excelente maneira de verificar essa aleatoriedade.2.1 Modelos médios móveis (modelos MA) Os modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos auto-expressivos e termos médios móveis. Na semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor atrasado de x t. Por exemplo, um termo autorregressivo de lag 1 é x t-1 (multiplicado por um coeficiente). Esta lição define os termos médios móveis. Um termo médio móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Deixe (wt overset N (0, sigma2w)), o que significa que o w t é idêntico, distribuído independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de 1ª ordem, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) O modelo de média móvel de ordem Q , Denotado por MA (q) é (xt mu wt theta1w theta2w dots thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele flip os sinais algébricos de valores de coeficientes estimados e termos (desactuados) em fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se os sinais negativos ou positivos foram usados ​​para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades teóricas de uma série de tempo com um modelo MA (1) Observe que o único valor diferente de zero no ACF teórico é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma amostra ACF com autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para estudantes interessados, as provas dessas propriedades são um apêndice para este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (com excesso de N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por um gráfico deste ACF segue. O enredo que acabamos de mostrar é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não fornecerá um padrão tão claro. Usando R, nós simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se uma série de séries temporais dos dados da amostra. Nós não podemos dizer muito com essa trama. A amostra ACF para os dados simulados segue. Vemos um pico no intervalo 1 seguido de valores geralmente não significantes por atrasos após 1. Observe que o ACF da amostra não corresponde ao padrão teórico da MA subjacente (1), que é que todas as autocorrelações por atrasos após 1 serão 0 . Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria as mesmas características amplas. Propriedades terapêuticas de uma série de tempo com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Observe que os únicos valores diferentes de zero no ACF teórico são para atrasos 1 e 2. As autocorrelações para atrasos superiores são 0 . Assim, uma amostra de ACF com autocorrelações significativas nos intervalos 1 e 2, mas as autocorrelações não significativas para atrasos superiores indicam um possível modelo de MA (2). Iid N (0,1). Os coeficientes são de 1 0,5 e 2 0,3. Uma vez que este é um MA (2), o ACF teórico terá valores diferentes de zero apenas nos intervalos 1 e 2. Os valores das duas autocorrelações diferentes de zero são A parcela do ACF teórico segue. Como quase sempre é o caso, os dados da amostra não se comportam tão perfeitamente quanto a teoria. Nós simulamos n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). A série de séries temporais dos dados segue. Tal como acontece com a série de séries temporais para os dados da amostra MA (1), você não pode contar muito com isso. A amostra ACF para os dados simulados segue. O padrão é típico para situações em que um modelo de MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos defasos 1 e 2, seguidos de valores não significativos para outros atrasos. Observe que devido ao erro de amostragem, a amostra ACF não corresponde exatamente ao padrão teórico. ACF para General MA (q) Modelos Uma propriedade de modelos de MA (q) em geral é que existem autocorrelações diferentes de zero para os primeiros atrasos de q e autocorrelações 0 para todos os atrasos gt q. Não-singularidade de conexão entre valores de 1 e (rho1) em MA (1) Modelo. No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor. Como exemplo, use 0,5 para 1. E depois use 1 (0,5) 2 para 1. Você obterá (rho1) 0.4 em ambos os casos. Para satisfazer uma restrição teórica chamada invertibilidade. Restringimos os modelos de MA (1) para ter valores com valor absoluto inferior a 1. No exemplo que acabou de ser dado, 1 0,5 será um valor de parâmetro permitido, enquanto que 1 10,5 2 não será. Invertibilidade de modelos de MA Um modelo de MA é dito invertido se for algébricamente equivalente a um modelo de AR de ordem infinita convergente. Ao convergir, queremos dizer que os coeficientes de AR diminuem para 0 quando avançamos no tempo. Invertibilidade é uma restrição programada em software de série temporal usado para estimar os coeficientes de modelos com termos MA. Não é algo que verificamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são fornecidas no apêndice. Nota de teoria avançada. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo inversível. A condição necessária para invertibilidade é que os coeficientes têm valores tais que a equação 1- 1 y-. - q e q 0 tem soluções para y que se encontram fora do círculo da unidade. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10 w t. 7w t-1. E, em seguida, simulou n 150 valores desse modelo e traçou as séries temporais da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0,7), lag. max10) 10 lags de ACF para MA (1) com theta1 0,7 lags0: 10 cria uma variável chamada atrasos que varia de 0 a 10. gráfico (Lag, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Chamado acfma1 (nossa escolha de nome). O comando de parcela (o comando 3) traça atrasos em relação aos valores ACF para os atrasos 1 a 10. O parâmetro ylab rotula o eixo y e o parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF, simplesmente use o comando acfma1. A simulação e os gráficos foram feitos com os seguintes comandos. Xcarima. sim (n150, list (mac (0.7))) Simula n 150 valores de MA (1) xxc10 acrescenta 10 para tornar a média 10. Padrões de simulação significa 0. gráfico (x, tipob, mainSimulated MA (1) dados) Acf (x, xlimc (1,10), mainACF para dados de amostra simulados) No Exemplo 2, plotámos o ACF teórico do modelo xt 10 wt .5 w t-1 .3 w t-2. E, em seguida, simulou n 150 valores desse modelo e traçou as séries temporais da amostra e a amostra ACF para os dados simulados. Os comandos R usados ​​foram acfma2ARMAacf (mac (0.5,0.3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typeh, ACF principal para MA (2) com theta1 0,5, Theta20.3) abline (h0) xcarima. sim (n150, list (mac (0.5, 0.3))) xxc10 plot (x, typeb, principal Simulated MA (2) Series) acf (x, xlimc (1,10), MainACF para dados simulados de MA (2) Apêndice: Prova de propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Variance: (texto (xt) texto (mu wt theta1 w) 0 texto (wt) texto (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 . A razão é que, por definição de independência do peso. E (w k w j) 0 para qualquer k j. Além disso, porque o w t tem 0, E (w j w j) E (w j 2) w 2. Para uma série temporal, aplique este resultado para obter o ACF fornecido acima. Um modelo de MA reversível é aquele que pode ser escrito como um modelo AR de ordem infinita que converge para que os coeficientes AR convergem para 0 à medida que nos movemos infinitamente de volta no tempo. Bem, demonstre invertibilidade para o modelo MA (1). Em seguida, substituímos a relação (2) para w t-1 na equação (1) (3) (zt wt theta1 (z - theta1w) wt theta1z - theta2w) No momento t-2. A equação (2) torna-se então substituímos a relação (4) para w t-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Se continuássemos ( Infinitamente), obteríamos a ordem infinita modelo AR (zt wt theta1 z - theta21z theta31z - theta41z pontos) Observe, no entanto, que, se 1 1, os coeficientes que multiplicam os atrasos de z aumentarão (infinitamente) de tamanho à medida que avançarmos Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo de MA reversível (1). Modelo de ordem infinita MA Na semana 3, veja bem que um modelo de AR (1) pode ser convertido em um modelo de MA de ordem infinita: (xt - mu wt phi1w phi21w pontos phik1 w dots sum phij1w) Este somatório de termos de ruído branco passado é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos voltando no tempo. Isso é chamado de ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Recorde na Semana 1, observamos que um requisito para um AR estacionário (1) é aquele 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Este último passo usa um fato básico sobre séries geométricas que requerem (phi1lt1) caso contrário, a série diverge. Navegação

No comments:

Post a Comment